Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Ferromagnetism and Superconductivity in pure and doped $RuSr_{2}GdCu_{2}O_{8}{}^{*}$

Joachim Hemberger¹, Arafa Hassen¹, Klaus Pucher¹, Alexander Krimmel¹, Alexander Boris¹, Prabhat Mandal², Alois Loidl¹

- ¹ Experimentalphysik V, Elektronische Korrelationen und Magnetismus, Insitut für Physik, Universität Augsburg, D-86159 Augsburg, Germany
- ² Saha Insitut of Nuclear Physics, 1/AF Bidhannagar, Calcutta 7000064, India

The "ferromagnetic" superconductors $Ru(La_xSr_{1-x})_2GdCu_2O_8$ and $RuSr_2Eu(Zn_xCu_{1-x})_2O_8$ are systematically investigated as a function of doping level, of temperature and of external magnetic field.

These compounds are characterized by superconductivity ($T_C = 45 \text{ K}$) in the CuO₂ planes coexisting with weak ferromagnetism in the RuO₂ planes. Pure Ru1212 reveals properties similar to those observed in heavily underdoped high-Tc materials.

The doping experiments lead to a reduction of the charge carrier density and already at x=0.03 superconductivity is completely suppressed. In the case of La doping without significant structural changes the magnetic ordering temperatures are slightly enhanced. On increasing x the charge carriers are localized at low temperatures and for x=0.1 semiconducting transport properties dominate below room temperature.

We show detailed examinations of transport, magnetization and caloric properties. In addition the magnetic AC-susceptibility was extensively analyzed and results from microwave and optical conductivity measurements in the far-infrared are presented.

^{*}This work was supported by the BMBF via the contract EKM 13 N6917 andby the DFG via SFB 484 (Augsburg)